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Abstract

This paper deals with the numerical study of melting of phase change material around a horizontal circular cylinder

in the presence of the natural convection in the melt phase. A two dimensional unsteady mathematical model has been

formulated in terms of primitive variables and a coordinate transformation technique has been used to fix the moving

front. The finite volume approach was used to discretize the system of governing equations, boundary and initial

conditions and obtain a system of linear algebraic equations. In the numerical solution an implicit scheme was used for

the momentum and energy equations and an explicit scheme for the energy balance at the interface. The numerical

predictions were compared with available results to establish the validity of the model and the numerical approach.

� 2003 Published by Elsevier Science Ltd.
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1. Introduction

Basically there are two methods for formulating the

problem of heat transfer with phase change. The first

method uses the temperature as a dependent variable

while the second uses the enthalpy as a dependent

variable in the energy equation. In the models based

upon the temperature, the energy equation is written

separately for each phase and the coupling between the

two equations is done through the energy balance at the

solid–liquid interface. In this type of formulation it is

necessary to know explicitly the position of the interface

in order to determine the temperature. Having a moving

interface not known before hand complicates the prob-

lem and its solution. One of the methods to solve the

problem is to immobilize the interface as done by Lan-

dau [1], Duda et al. [2], Saitoh [3] and Sparrow et al. [4].

A second method is to use the enthalpy as a dependent

variable and hence write a single energy equation for the

whole domain, liquid and solid. This method has the

advantage of not requiring to determine the interface

position in order to solve the energy equation. Com-

parative studies of the two methods can be found in

Furzerland [5], Viswanath and Jaluria [6]. A pioneer

study realized by Sparrow et al. [7] of fusion around a

vertical cylinder showed that natural convection could

not be ignored in the analysis of fusion problems. Later

Yao and Chen [8] determined an approximate solution

for the fusion problem around a horizontal constant

temperature cylinder by using the perturbation tech-

nique. They studied the effect of natural convection on

the fusion process and concluded that it depends

strongly on the Rayleigh number. Yao and Cherney [9]

resolved the case of fusion around a horizontal constant

temperature cylinder by using the integral method.

Rieger et al. [10] solved numerically the problem of fu-

sion around a horizontal cylinder under the conditions

of constant wall temperature and constant heat flux over

the cylinder wall. They included natural convection in
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the liquid phase and used body fitted coordinate tech-

nique to immobilize the fusion front. Prusa and Yao

[11,12] analysed numerically the effects of natural con-

vection during the process of fusion around a horizontal

cylinder. They used the technique of coordinate trans-

formation to fix the irregular moving interface and finite

difference approach to solve the problem numerically.

Additional experimental results and comparisons were

realized by Hermann et al. [13] and Ho and Chen [14].

The problem of melting around a circular cylinder as

available in the literature, specifically, Yao and Chen [8],

Yao and Cherney [9], Rieger et al. [10] and Prusa and

Yao [11,12] is formulated based on the stream function

and vorticity method, except the work of Sparrow et al.

[7] which is based upon primitive variables formulation.

In Sparrow et al. [7] work, the terms resulting from the

transformation of coordinates were eliminated in order

to simplify the solution of the problem. The contribution

of the present work is that the proposed formulation is

based upon primitive variables, transformation of coor-

dinates while keeping all the resulting terms and finally

that the solution involved the control volume approach.

The present paper deals with the numerical study of

melting of phase change material (PCM) around a

horizontal circular cylinder in the presence of natural

convection in the melt phase. A two-dimensional non-

steady mathematical model has been formulated in

terms of the primitive variables and a coordinate

transformation has been used to fix the moving inter-

face. The finite volume approach was used to discretize

the system of governing equations and the associated

boundary and initial conditions to obtain a system of

linear algebraic equations. The numerical code was

optimized and the numerical predictions were com-

pared with available numerical results to establish the

validity of the model and the adopted numerical ap-

proach.

2. Mathematical model

The physical problem is shown in Fig. 1. The hori-

zontal cylinder of radius ro is immersed in an infinite

solid PCM. At the instant t ¼ 0, the PCM is at the phase

change temperature Tm. When the cylinder surface

temperature is at To > Tm, the melting process starts.
Two melting cases will be treated here. The first when

the surface temperature of the cylinder To > Tm while the
other of specified heat flux q. The general simplifications
considered in this study include transient formulation

and two-dimensional Newtonian incompressible fluid

where the natural convection effects are considered. The

thermophysical properties of the PCM are assumed

constant except the density.

Nomenclature

cpL liquid specific heat, J kg�1 C�1

g gravity acceleration, m s�2

kL liquid thermal conductivity, Wm�1 C�1

L latent heat, J kg�1

P dimensionless pressure

Pr Prandtl number (¼ m=a)
ro cylinder radius, m

r radial coordinate, m

rL interface position, m

R dimensionless radial coordinate

RL dimensional interface position

Ra Rayleigh number based on temperature

(¼ gbðTo � TmÞr3o=ma)
Raq Rayleigh number based on heat flux

(¼ gbqr4o=mak)
Ste Stefan number based on temperature

(¼ cpðTo � TmÞ=L)
Stq Stefan number based upon heat flux

(¼ cpqro=Lk)
t time, s

T temperature of the liquid phase, �C
Tmean bulk temperature, �C
Vh dimensionless velocity component in the

tangential direction

VR dimensionless velocity component in the

radial direction

Greek symbols

aL liquid thermal diffusivity, m2 s�1

b coefficient of thermal expansion, K�1

/ dimensionless temperature

DL dimensionless melt thickness

g transformed radial coordinate

lL liquid dynamic viscosity, kgm�1 s�1

mL liquid kinematic viscosity, m2 s�1

h angular coordinate

qL liquid density, kgm�3

s dimensionless time
�KK;K;H;X;W auxiliary variables

8 volume

Superscript

� dimensionless variables

Subscripts

L liquid

m phase change

o surface of the cylinder

R radial direction

h angular direction
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The basic equations can be written as

Energy conservation equation
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Conservation of mass
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Equation of motion in the tangential direction

oV �
h

ot
þ 1

r
oðrV �

RV
�
h Þ

or
þ 1

r
oðV �

h Þ
2

oh
þ V �

RV
�
h

r

¼ � 1

qL

1

r
oP �

oh
þ �KK cos h þ mL

1

r
o

or
r
oV �

h

or

� ��

þ 1

r2
o2V �

h

oh2
� V �

h

r2
þ 2

r2
oV �

R

oh

�
ð3Þ

Equation of motion in the radial direction
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where the term �KK is given by �KK ¼ bgðT � TmÞ.

The initial and boundary conditions for Eqs. (1)–(4)

are

T ¼ Tm; V �
h ¼ 0; V �

R ¼ 0 at t ¼ 0 ð5Þ

T ¼ To; V �
h ¼ 0; V �

R ¼ 0 at r ¼ ro; t > 0 ð6Þ

oT
oh

¼ 0; V �
h ¼ 0;

oV �
R

oh
¼ 0 at h ¼ �90; t > 0 ð7Þ

Eq. (6) is used for the case of constant wall temperature.

The case of constant wall heat flux is given by

�kL
oT
or

¼ q; V �
h ¼ 0; V �

R ¼ 0 at r ¼ ro; t > 0 ð8Þ

The boundary conditions at the solid–liquid interface

are given by

T ¼ Tm; V �
h ¼ 0; V �

R ¼ 0 at r ¼ rL; t > 0 ð9Þ

1

"
þ 1

rL

orL
oh

� �2
#�

� kL
oT
or

�
¼ qLL

orL
ot

at r ¼ rL; t > 0

ð10Þ

The problem of phase change in the presence of natural

convection is extremely difficult to handle. To reduce

these difficulties, the front immobilisation technique is

used where the coordinates r and h are transformed to g
and h where

g ¼ r � ro
rL � ro

And the new domain is defined by 06 g6 1 and

�906 h6 90.
In order to facilitate the numerical calculations the

new coordinate system and also new dimensionless

variables are adopted. These variables are

R ¼ r
ro

and RL ¼ rL
ro

DL ¼ RL � 1 and g ¼ R� 1

DL

s ¼ aLt
r2o

Ste and / ¼ T � Tm
To � Tm

;

for the case of constant surface temperature;

s ¼ aLt
r2o

Stq and / ¼ T � Tm
qro=kLð Þ ;

for the case of constant wall heat flux;

Vh ¼
V �

h ro
aL

; VR ¼ V �
Rro
aL

; P ¼ P �

qLðaL=roÞ
2
;

Ste ¼ CpLðTo � TmÞ
L

; Stq ¼
CpLqro
LkL

Substituting the new variables in Eqs. (1)–(10), these

equations are written as below Equation of energy

conservation

Fig. 1. Layout of the physical problem.
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The initial, boundary and interface conditions can be

written as

/ ¼ 0; Vh ¼ 0; VR ¼ 0 at s ¼ 0 ð15Þ

/ ¼ 1; Vh ¼ 0; VR ¼ 0 at g ¼ 0; s > 0 ð16Þ

In the case of specified heat flux one can write:

� 1

DL

o/
og

¼ 1; Vh ¼ 0; VR ¼ 0 at g ¼ 0; s > 0

ð17Þ

The interface conditions are

/ ¼ 0; Vh ¼ 0; VR ¼ 0 at g ¼ 1; s > 0 ð18Þ

1

"
þ 1

ðDL þ 1Þ
oDL

oh

� �2
#�

� 1

DL

o/
og

�

¼ oDL

os
at g ¼ 1; s > 0 ð19Þ

The finite volume approach was used to discretize the

system of differential equations and obtain a system of

linear algebraic equations. The numerical solution was

determined using an implicit scheme for the momentum

and energy equations and explicit scheme for the energy

balance at the interface. Numerical tests were realized in

order to optimize the computational grid. Tests were

realized to optimize the grid size along the radial di-

rection using 50 points along the angular direction and

sets of radial points of 20, 30, 60 and 70. In another set

of tests 30 radial points were used together with angular

points of 30, 40, 50 and 70. A grid of 50 angular points

and 30 radial points was considered satisfactory con-

sidering the precision of the results (10�3) and the con-

sumed computational time. The time increments used

are related to the Rayleigh and Stefan numbers used and

are indicated on the graphs.

3. Results and discussion

Prusa and Yao [12] studied numerically the problem

of fusion around a horizontal cylinder considering nat-

ural convection in the liquid phase. In their study they

adopted a constant wall temperature on the surface of

the cylinder and formulated the phase change problem

by using stream and vorticity functions and coordinate
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transformation to fix the moving front. They also used

an approximate solution for the start of the phase

change process.

In order to validate the model the results of the

present numerical results are compared with the results

due to Prusa and Yao [12]. As can be seen from Fig. 2

the agreement is very good for the case of constant

surface temperature. The influence of natural convection

on the melting process is indicated by the non-symmetric

melting patterns in the top (90�) and bottom ()90�)
parts of the cylinder caused by the convective currents

which become dominant for times above s ¼ 1:0.
In another work by the same authors, Prusa and Yao

results [11], they treated the same problem of phase

change subjected to constant heat flux over the surface

of the cylinder and solved by the same approach as in

the previous case. For the set of parameters Rayleigh

number ¼ 5000, Stefan number ¼ 0:374 and Prandtl

number ¼ 54, they obtained curves for the interface

position, temperature distribution over the surface of the

cylinder temperature distribution in the radial and tan-

gential directions and Nusselt number at the solid–liquid

interface. Their results are used to compare with the

results of the present model. Fig. 3 shows the thickness

of the melt layer as calculated by both models. The

agreement is excellent for the position h ¼ �90� and
differs slightly for the position h ¼ 90�. These differences
can be attributed to the different numerical methods and

mathematical model used and the grid size adopted.

Figs. 4 and 5 show comparisons of the surface tem-

perature over the cylinder for the present model and

Prusa and Yao [11]. In Fig. 5, one can observe the

transition between the regime of dominant conduction

to the regime of dominant convection. The temperature

profiles for the dominant conduction regime (s ¼ 0:15
and 0.374) are horizontal lines. As can be seen in both

figures the agreement is very good. Fig. 6 shows another

comparison, variation of temperature along lines of

constant h, between the present model and Prusa and
Yao [11] results indicating good agreement.

Fig. 7 shows the comparative curves for the Nusselt

number at the liquid-solid interface. The profile at
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Fig. 2. Comparison of the predicted melt thickness with the

results of Prusa and Yao [12].
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s ¼ 0:374 indicates that the melting process is in the

conduction stage, while for s ¼ 0:75, the profile indicates
that the melting process reached the transition stage.

The results seem to agree relatively well, indicating that

the model represents well the case of fusion external

to the cylinder for the two cases of constant wall temper-

ature and constant heat flux.

Rieger et al. [10] studied the problem of fusion

around a horizontal cylinder under surface constant

temperature. Their model is formulated based upon

stream and vorticity functions and body fitted coordi-

nates and finite difference approximation. Their results

were compared with the numerical predictions from the

present model. Figs. 8 and 9 show the thickness of the

melt layer for values of Ra ¼ 104 and Ra ¼ 37,500. As

can be noticed the agreement is good. Figs. 10 and 11

show the variation of Nusselt number over the surface of

the cylinder for the case of Ra ¼ 104 and Ra ¼ 37,500. It

is interesting to observe how transition occurs between

the dominant conduction and the dominant convection
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regimes as reported by Sparrow et al. [15]. During the

dominant conduction process, the curves show a re-

duction in the Nusselt number. When the dominant

convection regime is established the profiles seem to be

constant. As can be seen the results agree well indicating

that the present model is able to predict precise results.

Figs. 12 and 13 show comparisons of Nusselt number at

the liquid–solid interface as calculated by Rieger et al.

and the present model. The results seem to agree very

well for the case of h ¼ �90� but differs slightly for the
position h ¼ 90� although keeping the same tendency.
Figs. 14 and 15 show the melt volume as calculated by

Rieger et al. and the present model for the two cases of

Ra ¼ 104 and Ra ¼ 37,500 showing good agreement

between the results. One can notice from Figs. 14 and

15, after achieving the dominant convection regime, the

melt volume variation with time seems to be linear as

reported by Hale and Viskanta [16].
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Fig. 11. Comparison of the predicted surface Nusselt number

with the results of Rieger et al. [10] for Ra ¼ 37,500.
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Fig. 12. Comparison of the predicted interface Nusselt number

with the results of Rieger et al. [10] for Ra ¼ 104.
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4. Conclusion

A model is proposed in terms of the primitive vari-

ables for the fusion around horizontal circular cylinder

including natural convection in the melt region. The

phase change front was immobilised by using a coordi-

nate transformation and the method of control volumes

was used. Two boundary conditions were investigated

one of constant wall temperature over the surface of the

cylinder and the other of constant heat flux for Rayleigh

number as high as 37,500. The predicted numerical re-

sults were compared with available numerical results due

to Prusa and Yao [11,12] and Rieger et al. [10]. The

agreement is found to be satisfactory indicating that the

proposed model is adequate to represent the physical

situation of fusion around a horizontal cylinder in the

presence of natural convection in the melt region.
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